Oxysterol-induced osteogenic differentiation of marrow stromal cells is regulated by Dkk-1 inhibitable and PI3-kinase mediated signaling.
نویسندگان
چکیده
Osteoporosis and its complications cause morbidity and mortality in the aging population, and result from increased bone resorption by osteoclasts in parallel with decreased bone formation by osteoblasts. A widely accepted strategy for improving bone health is targeting osteoprogenitor cells in order to stimulate their osteogenic differentiation and bone forming properties through the use of osteoinductive/anabolic factors. We previously reported that specific naturally occurring oxysterols have potent osteoinductive properties, mediated in part through activation of hedgehog signaling in osteoprogenitor cells. In the present report, we further demonstrate the molecular mechanism(s) by which oxysterols induce osteogenesis. In addition to activating the hedgehog signaling pathway, oxysterol-induced osteogenic differentiation is mediated through a Wnt signaling-related, Dkk-1-inhibitable mechanism. Bone marrow stromal cells (MSC) treated with oxysterols demonstrated increased expression of osteogenic differentiation markers, along with selective induced expression of Wnt target genes. These oxysterol effects, which occurred in the absence of beta-catenin accumulation or TCF/Lef activation, were inhibited by the hedgehog pathway inhibitor, cyclopamine, and/or by the Wnt pathway inhibitor, Dkk-1. Furthermore, the inhibitors of PI3-Kinase signaling, LY 294002 and wortmanin, inhibited oxysterol-induced osteogenic differentiation and induction of Wnt signaling target genes. Finally, activators of canonical Wnt signaling, Wnt3a and Wnt1, inhibited spontaneous, oxysterol-, and Shh-induced osteogenic differentiation of bone marrow stromal cells, suggesting the involvement of a non-canonical Wnt pathway in pro-osteogenic differentiation events. Osteogenic oxysterols are, therefore, important small molecule modulators of critical signaling pathways in pluripotent mesenchymal cells that regulate numerous developmental and post-developmental processes.
منابع مشابه
Osteogenic Oxysterol, 20(S)-Hydroxycholesterol, Induces Notch Target Gene Expression in Bone Marrow Stromal Cells
We previously reported that specific oxysterols stimulate osteogenic differentiation of pluripotent bone marrow stromal cells (MSCs) through activation of hedgehog (Hh) signaling and may serve as potential future therapies for intervention in osteopenia and osteoporosis. In this study we report that the osteogenic oxysterol 20(S)-hydroxycholesterol (20S) induces the expression of genes associat...
متن کاملPDGF-induced PI3K-mediated signaling enhances the TGF-β-induced osteogenic differentiation of human mesenchymal stem cells in a TGF-β-activated MEK-dependent manner
Transforming growth factor-β (TGF-β) is a critical regulator of osteogenic differentiation and the platelet-derived growth factor (PDGF) is a chemoattractant or mitogen of osteogenic mesenchymal cells. However, the combined effects of these regulators on the osteogenic differentiation of mesenchymal cells remains unknown. In this study, we investigated the effects of TGF-β and/or PDGF on the os...
متن کاملNaringin enhances osteogenic differentiation through the activation of ERK signaling in human bone marrow mesenchymal stem cells
Objective(s): Naringin has been reported to regulate bone metabolism. However, its effect on osteogenesis remains unclear. The aim was to investigate the effect of naringin on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) through the activation of the ERK signaling pathway in osteogenic differentiation. Materials and Methods: Annexin V-FITC assay and MTT assay ...
متن کاملI-28: Role of Mevalonate-Ras Homology (Rho)/Rho-Associated Coiled-Coil-Forming Protein Ki nase-Mediated Signaling Pathway in The Pathogenesis of Endometriosis-Associated Fibrosis
Background: Endometriosis, a disease affecting 3-10% of women of reproductive age, is characterized by the ectopic growth of endometrial glands and stroma surrounded by dense fibrous tissue. Whereas, normal eutopic endometrium shows scarless tissue repair during menstrual cycles, which suggests that the endometriotic tissues have distinct mechanisms of fibrogenesis. During the development of en...
متن کاملSustained epidermal growth factor receptor levels and activation by tethered ligand binding enhances osteogenic differentiation of multi-potent marrow stromal Citation
Epidermal growth factor receptor (EGFR)-mediated signaling helps regulate bone development and healing through its effects on osteogenic cells. Here, we show how EGFR activity and osteogenic differentiation responses in primary human bone marrow-derived multipotent stromal cells (MSCs) are influenced by presenting covalently tethered epidermal growth factor (tEGF) on the culture substratum, a p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cellular biochemistry
دوره 105 2 شماره
صفحات -
تاریخ انتشار 2008